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Abstract. A composite polygon is composed of a lattice polygon in the square lattice, which
contains in its interior an internal structure, which may also be a lattice polygon, or a lattice
tree or a lattice animal, or a lattice disc (or a collection of these). The properties of composite
polygons are considered in this manuscript. In particular, I shall consider the growth constants and
generating functions of these models, as well as the statistical mechanics of interacting models of
composite polygons. It is shown that there is an adsorption transition of the internal structure on the
containing polygon, and a transition which corresponds to the inflation of the containing polygon
(by the internal structure).

1. Introduction

Models of lattice polygons continue to attract much attention in the mathematical and physical
literature. They have served as models of ring polymers in a good solvent and have been
investigated for a variety of different reasons, see for example Sumners and Whittington (1988),
Guttmann (1989), Orlandiniet al (1998). Interacting polygons also received attention. Recent
work includes the use of a lattice polygon as a model of two-dimensional vesicles (Fisher
et al 1991), models of three-dimensional vesicles were studied in Leibler (1987), Orlandini
and Tesi (1992), Stellaet al (1992) Orlandiniet al (1993), Whittington (1993), Orlandiniet al
(1996) and Janse van Rensburg (1997, 1998b). Models of interacting polygons, similar to
models of walks with a nearest neighbour interaction between vertices (originally introduced
by Mazur and McCrackin (1968), see also Tesiet al (1996)), and models of adsorbing walks
(Hammersleyet al1982, Vrbov́a and Whittington 1996, 1998a, b, Janse van Rensburg 1998a),
have also been considered.

In this paper I consider a variant of two-dimensional polygons (or vesicles). One such
possible variant is illustrated in figure 1; it is a composite of a lattice polygon and a lattice
tree, which is contained in its interior. Other variants are obtained by replacing the tree with a
polygon, or an animal, or a disc, or a collection of these. Such objects will be calledcomposite
polygons. Models of composite polygons will also be closely related to models of dense walks,
polygons, trees or animals in a confined area, such as a square or rectangle. These models were
introduced by Welsh (1985), and studied by Whittington and Guttmann (1990) and Madras
(1995). Related studies on dense walks were carried out by Duplantier and Saleur (1987),
Burkhardt and Guim (1991), Prentis (1991), Batchelor (1994) and Batchelor and Yung (1994).
A composite polygon may also be viewed as a model of a polymer or a branched polymer in
a random geometry (of the containing polygon). In this context, an interaction between the
internal structure and the containing polygon is a model of a polymer or branched polymer
interacting with a substrate of random (fractal) geometry, see for example Nakanishi and Moon
(1992).
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Figure 1. A composite two-dimensional polygon.

The composite polygon consists of two parts; the first is acontaining polygon, and it
encloses aninternal structurein its interior (in figure 1 this is a tree). If the internal structure
is a connected object, then the composite polygon will be called asimple composite model; if
it need not be connected, then acomplex composite modelis considered†.

The first questions about composite polygons concern the existence of growth constants.
In particular, if there arepn(m) composite polygons‡ consisting of a polygon of lengthn
containing an internal structure of sizem, does the limit

lim
n→∞

1

n
logpn(bεnc) = logP(ε) (1.1)

exist? The numberε > 0 is fixed and real, andbqc is the larger integer smaller than or equal
to q. Are there related limits to the one presented above? The existence of the growth constant
of lattice walks and polygons are closely related to these questions (Hammersley 1960, 1961,
Hammersley and Welsh 1962), as are the existence of growth constants of other embedded
graphs such asθ -graphs, tadpoles and so on (Soteros 1993, 1998). Limits of this type were
also considered by Madras (1995) for walks that cross (and are confined) to a square.

An interacting model of composite polygons can be obtained by the introduction of an
activity z conjugate to the size of the internal structure: the partition function in such a model
is defined by

pn(z) =
∑
m>0

pn(m)z
m. (1.2)

In this model the existence of a limiting free energy is also an important question, and I shall
show that the limit

F(z) = lim
n→∞

1

n
logpn(z) (1.3)

exists ifz < zc in simple composite models, wherezc > 0 is a critical value of the activity. A
more interesting case is found if there is an interaction between the internal structure and the
polygon; this interaction could be defined by introducing an activityy conjugate to the number
of nearest neighbour contacts between vertices in the internal structure and the polygon. The
partition function in such a model is

pn(y, z) =
∑
k,m

pn(k,m)y
kzm (1.4)

† Notice that the internal structure is confined to the interior of the polygon, and is disjoint with the polygon. In
this paper the internal structure will be imagined to be a polygon, tree or animal. In complex composite polygons a
self-avoiding walk can also be used, but the arguments in this paper will not apply for a simple composite polygon
with an internal structure which is a walk. That model would not submit to the methods in this paper, and a different
approach may be necessary. A hint about this can also be found in the study of walks that cross a square (Madras
1995).
‡ The number of simple composite polygons will be denoted bypsn(m), and the number of complex composite
polygons bypcn(m); if the superscript is left away, then a generic model, which may be either simple or complex, is
obtained.
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wherepn(k,m) is the number of composite polygons containing a structure of sizem and with
k nearest neighbour contacts between the internal structure and the containing polygon. The
existence of a free energy in these models is a particularly interesting question, and I shall
show that it exists for a certain range of the activities in simple composite models. In addition,
I shall show that there are critical lines in the phase diagram of this model. Ifz is increased,
then a line of transitions to a phase of inflated simple composite polygons is encountered; ify

is increased (withz < zc) there is also an adsorption transition of the internal structure on the
polygon.

The existence of growth constants and free energies rely on a generalized super-
multiplicative inequality involvingpn(k,m). It is a challenge to show that such a relation
exists in simple composite models, and section 2 is devoted to anunfolding of a polygon
which will be the key to a proof that there is a super-multiplicative relation in these models.
In particular, I shall show that a polygon can beunfoldedthrough its convex hull, and if it is
augmented by adding a small number of edges, then two unfoldings will produce a polygon
which contains the original convex hull in its interior, and is otherwise disjoint with it. The
most important fact about the unfolding is that it can be done in o(n) operations, a fact which is
proven using the result in appendix A. In section 3 the existence of growth constants and limits
such as the limit in equation (1.1) are considered. A model of simple composite polygons
with an interaction between the containing polygon and the internal structure is considered in
section 4. The phase diagram of this model is found to contain at least two critical lines; one
a line of transitions to an inflated phase, and the second a line of transitions to a deflated and
adsorbed phase (where the internal structure adsorbs on the containing polygon). The line of
adsorption transitions meet the line of transitions to an inflated phase at a critical endpoint.

2. Unfolding polygons

LetA be a polygon and letC(A) be its convex hull (see figure 2). Theinterior of C(A) will
be denoted bỹC(A), and the closure of̃C(A) is C̄(A) = C(A) ∪ C̃(A). The unfolding of the
polygonA will be a sequence of steps which will changeA into a polygonAuu such that the
closure of the convex hull ofA is contained entirely in the interior of the convex hull ofAuu:
C̄(A) ⊂ C̃(Auu). The basic construction is the reflection of parts ofA through the convex hull,
but there are many technical details which must be considered in this process. For example,
if A is a square, then it is equal to its convex hull, and it cannot be changed into a different

Figure 2. The convex hull of a polygon. Pivot points are indicated by•.
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polygon using reflections through its convex hull.
The construction will be presented in several stages. I first discuss the convex hull of a

lattice polygon, before the basic constructions are presented. The unfolding will not make
‘too many’ changes to a polygon, and this will be useful in the study of composite models in
section 3.

2.1. The convex hull of a polygon

The convex hull of a lattice polygonA is the minimum length (off-lattice) polygon which
containsA. C(A) consists of straight line segments joined into a convex plane polygon (as
opposed to a lattice polygon); the first and last vertices of each line segment are vertices in the
polygonA, and they are calledpivot points. Note that exactly two line segments in the convex
hull are horizontal (parallel to theX-axis), and two are vertical (parallel to theY -axis).

A lexicographic ordering of the vertices inA, first with respect to theX-direction, and
then with respect to theY -direction, will define a unique ‘lexicographic most’ vertex, which
is called theprimary top vertextp of A, and a unique ‘lexicographic least’ vertex, which is
called theprimary bottom vertexbp ofA. Similarly, asecondary top vertexts and asecondary
bottom vertexbs can be defined by doing the lexicograhic ordering first in theY -direction,
and then in theX-direction. These vertices are indicated in figure 2. It is possible that the top
verticestp andts are coincident, and that the bottom verticesbp andbs are coincident. These
top and bottom vertices divide the polygon into four sections, of which two may be empty.

Lemma 2.1. Let A be a polygon of lengthn and with convex hullC(A). Then there is a
constantK0 > 0 such thatC(A) is the union of at mostK0bn2/3c line segments. Thus, there
are at mostK0bn2/3c pivot points in the convex hull.

Proof. Let the primary and secondary top and bottom vertices ofA be defined as above. In
addition, consider the subwalk of the polygon betweenbs and tp. Label the pivot points in
this subwalk by 1, 2, . . . , starting atbs (see figure 2). The pivot points are lattice points in
the square lattice (with integer coordinates), and they are the endpoints of the line segments
whose union is the segment ofC(A) between the verticesbs andtp. Let`i be the line segment
between pivot pointsi andi + 1. Letθi be the angle betweeǹi and the positiveX-direction;
then tanθi is a rational number. Define

tanθi = qi

pi

with (pi, qi) relative primes, and suppose that there areM such line segments and angles with
tanθi 6 1. By definition, tanθ1 = 0, in this case defineq1 = 0 andp1 = 1. SinceC(A) is
convex,

0= tanθ1 < tanθ2 < · · · < tanθM 6 1

or in other words

0= q1

p1
<
q1

p2
< · · · < qM

pM
6 1. (†)

The number of edges in the part of the polygonω which joins the endpoints of̀i is at least
pi + qi , so that

M∑
i=1

(pi + qi) 6 n. (‡)

Thus, theM distinct points(pi, qi) with qi 6 pi satisfy the constraints in equations(†) and
(‡). The largest number of distinct points satisfying these constraints is bounded from above
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Figure 3. The reflected image of a subwalk. Figure 4. The augmentation of a polygon.

by C0bn2/3c; a fact which is proven in appendix A. ThusM 6 C0bn2/3c. By reflecting or
rotating the polygon, the number of line segments in the subwalk of the polygon betweenbs
andtp which makes angles greater thanπ/4 with the positiveX-direction can be bounded by
C0bn2/3c. Thus there are at most 2C0bn2/3c such line segments in the section of the convex
hull betweenbs andtp. Therefore, the total number of line segments in the convex hull is at
most 8C0bn2/3c. �

Lemma 2.1 states that if a lattice polygonA has lengthn, and convex hullC(A), then
C(A) is anM-gon, whereM 6 K0bn2/3c, for some fixed numberK0 independent ofA andn.
The next step is the unfolding of subwalks ofA through the sides ofC(A); since there are at
mostK0bn2/3c such sides, this will limit the number of unfolding of subwalks.

2.2. The unfolding of a polygon

Let the convex hull of a polygonA of lengthn beC(A), and suppose thatC(A) is anM-gon
composed of line segments{`i}Mi=1, whereM 6 K0bn2/3c. The endpoints of a line segment
`i are pivot points, and they are vertices inA; they are also the endpoints of a subwalkAi of
A which is entirely in the closurēC(A). The basic operation in an unfolding of a polygon is
a reflection ofAi through the midpoint of the line segment`i as illustrated in figure 3. The
reflected image ofAi , denoted byR(Ai), is disjoint withC̃(Ai).

There are potential problems with the operation in figure 3 only if the line`i is parallel to
a lattice axis; in that case the entire subwalkAi might be contained iǹi (that is,Ai = `i), and
soR(Ai) = Ai). For every other̀ i in the convex hull, every edge (except for possibly one
of its endpoints) inAi is in C̃(A), and so every edge is moved outsideC̃(A) in the reflection.
Only vertices inR(Ai)may still be inC(A). To avoid the problems above when`i is parallel
to a lattice axis, I shall slightly changeA by adding eight new edges to it.

In the previous section the primary and secondary top and bottom vertices ofA were
defined. Theprimary top and bottom edgesof A are similarly defined: they are the
lexicographic most and least edges with respect to an ordering of their midpoints; first in
theX-direction, and then in theY -direction. Similarly, thesecondary top and bottom edgesof
A are the lexicographic most and least edges with respect to an ordering of the midpoints of the
edges; first in theY -direction, and then in theX-direction. A polygonA is augmentedwhen
two edges are added at each of the primary and secondary top and bottom edges as illustrated in
figure 4. This increases the length of the polygon by eight edges, and the augmented polygon
derived fromAwill be denoted byAa. An augmented polygon has the important property that
only its primary and secondary top and bottom edges are contained in its convex hull. Every
other edge inAa is either disjoint with the convex hull, or has at most one endpoint in the convex
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hull. The unfolding of a polygonA always proceeds by operating on the augmented polygon
Aa derived fromA. The following lemma states the basic construction in an unfolding.

Lemma 2.2. LetA be an arbitrary polygon, and letC(A) be its convex hull. Then any edge
in Aa can be reflected through the convex hullC(Aa) to an image which is disjoint with the
interior C̃(A) of the convex hull ofA, and which has at most one endpoint in the closureC̄(A)

of the convex hull ofA.

Proof. Suppose thatC(A) = ∪Mi=1`i is the union of straight line segments`i joined at pivot
points inA, and let the pivot points cutA into subwalksAi , where the first and last vertices of
Ai are the endpoints of̀i (see figure 3). AugmentA toAa, and similarly letC(Aa) = ∪Ma

i=1`
a
i

be its convex hull, consisting ofMa 6 M line segments̀ai , with pivots points which cutAa

into subwalksAai . Let e be an arbitrary edge inAa. There are two possibilities: in the first
case,e may be a top or a bottom edge (primary or secondary), or be adjacent to a top or a
bottom edge ofAa. By the construction of the augmented polygon,e is then disjoint with
C̃(A), and there is nothing to prove. In the second case,e is contained in some subwalkAi
of A. ButAi is a subwalk of someAai in the augmented polygon, and soe has at most one
endpoint inC(Aa). ReflectingAai through the midpoint of̀ ai to R(Aai ) givesR(e) disjoint
with C̃(Aa). But sinceC̃(A) ⊂ C̃(Aa), R(e) ∩ C̃(A) = ∅. If one endpoint ofe is in C̄(Aa),
then one endpoint ofR(e) will also be inC̄(Aa). �

Lemma 2.2 suggests that by reflecting subwalks in an augmented polygon through the
convex hull, the polygon can be mapped to an image which is disjoint with the interior of the
convex hull of the initial polygon. The result will be a polygon which isunfoldedwith respect
to the initial polygon.

Theorem 2.3.LetA be an arbitrary polygon, and let it be augmented toAa. Suppose thatA
has lengthn. Then there exists a constantK0 such that at mostK0b(n + 8)2/3c reflections of
subwalks inAa is necessary to produce a polygonAu of lengthn + 8, with the properties that
Au ∩ C̃(A) = ∅, andC̃(Au) ⊃ A. Moreover, no edge inAu are contained inC̄(A) (but some
vertices inAu may be contained in̄C(A)).

Proof. LetC(Aa) = ∪Mi=1`
a
i where thè a

i are straight line segments. ThenM 6 K0b(n+8)2/3c
by lemma 2.1, sinceA has lengthn. Order the`ai lexicographically with respect to their
midpoints, and label the least by 1, the next least by 2 and so on, until the most gets labelM.
SinceAa is an augmented polygon, exactly four of the`ai are parallel to a lattice axis, and they
are all of length one. LetAai be that subwalk ofAa with endpoints the endpoints of`ai . By
the definition ofAa, `a1 is a vertical line segment of length one, and it consists of the primary
bottom edge ofAa. This is illustrated in figure 5. Since this edge, and its endpoints, are
already disjoint withC̄(A), nothing needs to be done here. ReflectAa2 through the midpoint
of `a2 to R(Aa2), and letA(2) = (Aa \ Aa2) ∪ R(Aa2) be the new polygon. By lemma 2.2, all
the edges inR(Aa2) are disjoint withC̃(Aa), and at best has one endpoint inC̄(Aa). Continue
this process: at theith step proceed as follows. Let the convex hull ofA(i−1) be composed of
line segments̀ (i−1)

j : C(A(i−1)) = ∪j `(i−1)
j . LetA(i−1)

j be that subwalk ofA(i−1) which has

the same endpoints as`(i−1)
j ; and letA(i−1)

i be that subwalk ofA(i−1) such that̀ (i−1)
i is that

line segment inC(A(i−1)) with the lexicographic least midpoint and whereA(i−1)
i has edges

in C̃(A). Now form the polygonA(i) = (A(i−1) \ A(i−1)
i ) ∪ R(A(i−1)

i ). This is illustrated in

figure 5. Finally, one finds the polygonA(M
′) = (A(M ′−1) \ A(M ′−1)

M ′ ) ∪ R(A(M ′−1)
M ′ ), for some

M ′. The number of these reflections will not exceed the number of sides in the convex hull of
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Figure 5. Unfolding a polygon. The dashed lines are images of
subwalks in the polygon reflected through the convex hull, which
is indicated by the dash-dotted lines. The reflections of subwalks
takes place in increasing lexicographic order of the midpoints of
the line segments which makes up the convex hull. Closely dotted
lines are images of subwalks which were later reflected again,
while the two wider spaced dotted lines are parts of the convex
hull of a partly unfolded polygon encountered midway through
the construction.

Aa, since each subwalkAai will be mapped outside of the convex hull in a single reflection of a
subwalkA(i−1)

j . ThusM ′ 6 M 6 K0b(n+8)2/3c. Since eachR(A(i−1)
i ) is disjoint withC̃(A),

and since each edge inR(A(i)i ) has at most one endpoint in̄C(A), the theorem follows. �

This theorem has an important corollary.

Corollary 2.4. LetAu be the unfolded image of a polygonA. Then there exists aK1 such that
Au is the image under unfolding ofat most [n2]K1bn2/3c distinct polygons, if the unfolding is
done as in theorem 2.3.

Proof. Each of the polygons which unfolds toAu can be reconstructed by choosing pairs
of vertices onAu, and then by reflecting subwalks ofAu between these vertices through
the midpoints of the line segment connecting the vertices intoC(Au). A pair of vertices
can be chosen in fewer than(n + 8)2 ways, and the reflection for a given pair is done
uniquely. Finally, this must be repeated at mostK0bn2/3c times, giving rise to at most
(n + 8)2 + (n + 8)4 + · · · + [(n + 8)2]K0bn2/3c different polygons. Since there areK0bn2/3c
terms in this sum, and the last term is the largest, this is at mostK0bn2/3c[(n + 8)2]K0bn2/3c

polygons. Since the smallest polygon has length 4, increasingK0 shows that a bound of the
form [n2]K1bn2/3c can be found. �

There is a second important corollary to theorem 2.3. This corollary will allow the
unfolding of a polygon to be disjoint with the closure of its convex hull.

Corollary 2.5. LetA be a polygon, and let it be augmented toAa. By unfoldingAa toAu, and
then augmenting and unfoldingAu to findAuu, the following is obtained:Auu ∩ C̄(A) = ∅
andC̃(Auu) ⊃ C̄(A).

Proof. Unfold Aa as in the proof of theorem 2.3 to findAu. Every edgevw in Au is either
disjoint withC̄(A), in which case it will stay disjoint with̄C(A) if ωu is unfolded again, or has
at most one endpoint (sayv) in C̄(A). Since its other endpoint (w) is not contained in̄C(A),
it is the case thatv is in C̃(Au), and a second unfolding will mapv to be disjoint withC̄(Au),
and thus withC̄(A). �
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Figure 6. Composite models: (a)–(c) are examples of simple composite models. In particular, (a)
is a polygon containing a polygon, (b) a polygon containing a tree and (c) a polygon containing a
disc. The model in (d) is a complex composite model containing polygons.

3. Composite models of polygons

In this section an important assumption about the internal structure of composite polygons will
be made. Letqm be the number of conformations of the internal structure if it has sizem and
if it is connected, counted modulo translations (and with the containing polygon disregarded).
For example, if the internal structure is a polygon of lengthm, thenqm is the number of
polygons of lengthm, counted up to translation. I assume thatqm satisfies a generalized
super-multiplicative relation of the type

qm1qm2 6
k∑

i=−k
qm1+m2+i (3.1)

wherek is a constant, and thatqm is bounded from above exponentially inm: qm 6 Km for
some value ofK > 1. This is certainly true for internal structures which are polygon, trees or
animals or discs (Hammersley 1961, Klein 1981, Janse van Rensburg and Whittington 1990).
Examples of these models are illustrated in figure 6.

An immediate consequence of equation (3.1) is that the limit

logξ = lim
m→∞

1

m
logqm (3.2)

exists, whereξ is thegrowth constantof the objects which are the internal structures in our
models (Wilker and Whittington 1979)†. Notice that polygons are also super-multiplicative;
the number of polygons of lengthn will be denoted bypn, and concatenating them similarly
to the containing polygons in figure 7 givespn1pn2 6 pn1+n2. In other words, there exists a
growth constant for polygons:

logµ2 = lim
n→∞

1

n
logpn. (3.3)

If the internal structure is a polygon, thenξ = µ2.

3.1. Complex composite polygons

In this section I examine the limiting free energy of a complex composite polygon. The usual
construction in a proof that the limiting free energy exists in a model of composite polygons
is illustrated in figure 7. Place the two composite polygons such that the top edge of the first

† The proof is as follows: letkm be that value ofi which maximizes the right-hand side of equation (3.1). Then
kn = o(n), andqmqn−m 6 (2k + 1)qn+kn . But this inequality is enough to prove the existence ofξ , provided that
qm 6 Km for some constantK > 0.
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Figure 7. Concatenation of composite polygons in a complex composite model. The composite
polygon on the right is translated until its primary bottom edge is parallel to the primary top edge of
the composite polygon on the left, and their midpoints differ by exactly one in theX-direction (with
all other coordinates equal). Delete the primary top edge of the left composite polygon, and the
primary bottom edge of the right composite polygon, and paste the polygons together by inserting
the dotted edges.

is one step from the bottom edge of the second in theX-direction. Delete the top and bottom
edges, and join the two polygons by inserting the two edges in dotted lines. This shows that

m∑
m1=0

pcn1
(m−m1)p

c
n2
(m1) 6 pcn1+n2

(m) (3.4)

and by multiplication withzm and summing overm, it follows that the partition function,
defined by

pcn(z) =
∑
m

pcn(m)z
m (3.5)

satisfies a super-multiplicative inequality:

pcn1
(z)pcn2

(z) 6 pcn1+n2
(z) (3.6)

and therefore the limit

Fc(z) = lim
n→∞

1

n
logpcn(z) (3.7)

exists, but it may be infinite (Hille 1948).

Theorem 3.1.The limiting free energy in models of complex composite polygons exists.
Moreover, ifz > 0, thenFc(z) = ∞. In other words, there is a transition atz = 0 (zero
temperature) to an inflated phase.

Proof. The limiting free energy exists as in equation (3.7). I shall show that it is infinite
if z > 0 for internal structures which are polygons; the proofs for other internal structures
are similar. Consider a square polygon of side-lengthl. The maximum number of internal
polygons that may be fit in this square is at leastb(l − 2)2/4c, if all these have length four
edges, and are packed in the obvious densest way. Suppose that onlybεl2c polygons of length
four are packed in, then they can be packed in at least

(b(l−2)2/4c
bεl2c

)
ways, so that

lim inf
n→∞

1

n2
logpcn(z) > lim inf

l→∞
1

16l2
log

(b(l − 2)2/4c
bεl2c

)
z4bεl2c

= 1

16
log

(
(1/4)1/4z4ε

εε(1/4− ε)1/4−ε
)
.

This is a maximum ifε = z4/4(1 + z4), in which case

lim inf
n→∞

1

n2
logpcn(z) >

1

16
log(1 + z4)1/4. (†)
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In other words, ifz > 0, then lim infn→∞ 1
n2 logpcn(z) > 0, so thatFc(z) = ∞. �

The result is that models of complex composite polygons exhibits a phase transition at zero
‘temperature’. It is not clear that the limit limn→∞[logpcn(z)]/n

2 exists (it exists in models of
walks that cross a square (Madras 1995)). If it exists then it is non-zero and finite. In the case
of polygons this may be seen as follows. Notice that the maximum combined length of internal
polygons that may be put in a containing polygon of lengthn is d(n/4)2e, and thatk polygons
can be packed in at most

(d(n/4)2e
k

)
ways into the containing polygon by choosing the location

of the top vertex in each. Thus, if the lengths of the internal polygons are{m1, m2, . . . , mk},
where

∑
i mi = m, then

pcn(z) 6
∑
m>0

pn
∑

k6dm/4e

(d(n/4)2e
k

)[∑
{mi }

δ(m−∑i mi )

[ k∏
j=1

qmj

]]
zm (3.8)

where the sum over{mi} is over all the possible partitions ofm into {mi}. Notice that the
number of containing polygons is at mostpn, and that if there arek components in the internal
structure, thenk 6 dm/4e. Polygons can be concatenated so thatqm1qm2 6 qm1+m2. Thus,∏k
j=1 qmi 6 qm. The combinatorial factor is a maximum whenk = bd(n/4)2e/2c. Then∑
k6dm/4e[

∑
{mi } δ(m−

∑
i mi )

] 6 P(m), whereP(m) is the number of partitions ofm. The
outcome of equation (3.8) is then

pcn(z) 6 pn
( d(n/4)2e
bd(n/4)2e/2c

)∑
m>0

P(m)qmz
m. (3.9)

Notice thatP(m) 6 eO(
√
m), and thatm 6 d(n/4)2e. Thus,

pcn(z) 6 d(n/4)2epnq(d(n/4)2e+κ)eO(n)

( d(n/4)2e
bd(n/4)2e/2c

)
max{1, zd(n/4)2e} (3.10)

where the fact thatqm 6 qm+2 for polygons was used, and whereκ is a number in{0, 1} such
thatd(n/4)2e + κ is even. Take logarithms of the above, divide byn2 and letn → ∞. This
gives

lim sup
n→∞

1

n2
logpcn(z) 6

1

16
log[2ξ ] +

1

16
log(max{1, z}). (3.11)

A similar argument shows that this limsup is also finite if the internal structure is a forest, or
a collection of animals, and so on.

3.2. Simple composite polygons

In the case of a simple composite model the proof of a super-multiplicative relation is much
more complicated. The fact that the concatenation in figure 8 of two simple composite polygons
will give a composite polygon containing two internal structures must be overcome by finding
a construction which will concatenate the internal structures as well. It is in this part of the
argument that the assumption in equation (3.1) is important.

The concatenation of simple composite polygons proceeds by the concatenation in figure 8.
The next step is to concatenate the internal structures, and this can only be done with the help
of the unfolding of the polygon as in section 2. I shall present a proof in the case that the
internal structure is a polygon; the other models (trees, animals or discs, and so on) can be
handled in a similar way, and the outcome will not differ in an important way from the case of
polygons. The construction proceeds now as illustrated in figure 8.

Let A consist of a polygon containing two internal structures, where the polygon was
created in the concatenation of two simple composite polygons. The obstacle to concatenating
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Figure 8. Concatenation in a simple composite model.

the two internal structures into one is that one of them, or both, may be entangled with the
containing polygon in such a way that it is not possible to translate them into a convenient
arrangement which will make the concatenation possible. To disentangle them from the
containing polygon,A will be unfolded through its convex hull. The convex hull of the
containing polygonA contains line segments which straddles vertices between the constituent
polygons from whichA was created; these are for example the line segmentsOP andQR in
figure 8. An important point is that the internal structures inA are both disjoint withOP and
QR, and are contained in the wedge formed byOP andQR.

Unfold A twice as in theorem 2.3 through its convex hull to obtainAuu. Both the line
segmentsOP andQR are inC̃(Auu), and so the quadrangleOPRQ are also contained in
C̃(Auu). By corollary 2.5 there are no vertices in the internal structuresB1 andB2 incident
with vertices inAuu, and moreover,̃C(A) is disjoint withAuu. Since both internal structures
are also contained in the convex hull of the concatenated polygons, they are untangled from
Auu and they can be translated (as sets inR3) parallel to a line confined to the wedge made by
the linesOP andQR inside the convex hull. Translate them until there are two vertices (one
in each) within unit distance from one another†. Since both translated internal structures are
still disjoint withOP andQR, they can be pushed back onto the lattice. The result is thatAuu

contains two internal structures such that there are two vertices, one in each internal structure,
a unit distance apart.

The last step is the concatenation of the two internal structures. I shall describe the case
for polygons; trees, animals or discs can be handled in a similar way. There are two vertices
v andw in the two structures, (one with (say)m1 edges, and the other withm2 edges) which
are adjacent. This is the outcome of the construction in figure 8.

The concatenation of two internal structures which are polygons proceeds by chasing
through the diagrams in figure 9. Either there are two parallel edges (one in each internal
structure) a unit distance apart (case (a)), or there are not (case (b)). In case (a) letva and
wx be the parallel edges. Remove them and replace them withvw andax. Then the internal
polygons are concatenated and hasm1 +m2 edges. Alternatively, there are no parallel edges.
Then there are two verticesv andw a unit distance apart, this situation (or a rotation of it) is
in case (b). There are three subcases under case (b). In the first subcase both verticesa and

† That this can always be done is seen as follows. Translate bothB1 andB2 normal toOP until they each have a
vertex in (say)OP . Then translate both or one of them parallel toOP (one can be translated towards the wider end
of the wedge) towards one another until they almost intersect. Finally push them both a short distance offOP onto
the lattice. Since the wedge opens in one direction, or is, at worst, a slab of constant width, this is always possible.
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Figure 9. Two internal polygons can be concatenated by a case analysis.

b are unoccupied (case (b1)). Then proceed by deletingpv andwx, and insertingvax and
pbw, this gives a polygon withm1 +m2 + 2 edges. In the second subcase (case (b2)) eithera

or b are occupied. Without loss of generality, supposeb is occupied, and note thatbc cannot
be occupied (otherwise there is a pair of parallel edges). Then the only possible case is the
one in case (b2). Sincea is not occupied, deletewx andvpb, and insertvax andwb to create
a polygon of lengthm1 + m2. The third subcase is when botha andb are occupied. Since
bothbc andva are not present, the only possible situation is the one in case (b3). Under case
(b3) there are two more subcases. Ifc is absent, then case (b3.1) is obtained. Deletewy and
vpb, and addbcy andvw to obtain a polygon of lengthm1 +m2. Otherwise, bothc anda are
present, and subcase (b3.2) are found. Sincexe is absent (there are no parallel edges),xzmust
be present. Similarly,yzmust be present, and so this case can only arise ifm2 = 4. Thus, just
discard the polygon of length 4 to find a polygon of lengthm1 +m2 − 4. This completes the
case analysis. Trees, animals and discs can be handled in a similar way.

Lemma 3.2. If psn(m) is the number of simple composite polygons consisting of a polygon of
lengthn and containing an internal structure of sizem, then there is a constantK0, and a fixed
integerk such that

m∑
m1=0

psn1
(m−m1)p

s
n2
(m1) 6 [(n1 + n2)

2]2+K0(n1+n2)
2/3

k∑
i=−k

psn1+n2+16(m + i).

Proof. Suppose that a simple composite polygonA1 of lengthn1 and internal structure of size
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m−m1 is concatenated with a simple composite polygonA2 of lengthn2 and internal structure
of sizem1. Then the concatenated (and unfolded) polygon hasn1 + n2 + 16 edges, and the
concatenated internal structure has at leastm− 4 and at mostm + 2 edges, thus choosek = 4.
By corollary 2.4 there are at most [(n1+n2+16)2]K0(n1+n2+16)2/3 polygons which can be unfolded
to the same (augmented) image. The 16 can be left away sincen1 + n2 > 8 by choosing a
largerK0. In addition, the internal structures are translated before they are concatenated, so
that their top vertices explore the entire area of each component polygon. Since the area ofAi
is at mostn2

i , another factor of 2n2
1n

2
2 is needed (the factor of 2 accounts for the fact that there

are two choices for placing the internal structures). Now observe that(n1 + n2)
2 > 2n1n2 to

find the generalized super-multiplicative inequality as claimed. �

There is a corollary to theorem 3.1 and lemma 3.2. In particular, the super-multiplicative
inequalities can be slightly weakened to get results which will be more useful for another
purpose.

Corollary 3.3.

psn1
(m1)p

s
n2
(m2) 6 [(n1 + n2)

2]2+K0(n1+n2)
2/3

k∑
i=−k

psn1+n2+16(m1 +m2 + i).

The inequality in corollary 3.3 is not enough to prove that the limit limn→∞ 1
n

logpsn(Ln)
exists for any integerL. I shall later show that there is a sequence of numbersan = o(n) such
that the limit

lim
n→∞

1

n
logpsn(Ln + an) = logχsL (3.12)

exists. As a corollary of that theorem, it follows that the inequality in lemma 3.2 is enough to
show existence of the limit in equation (3.12), provided that there are exponential bounds inn

onpsn(Ln) (there are such bounds, sincepsn(Ln) 6 n2pnqLn, and bothpn andqLn are bound
exponentially (see equation (3.1) and the assumptions following it)). Corollary 3.3 is enough
to show that there exists a free energy in this model; this is also easier to see from lemma 3.2.
The existence of limiting free energies is discussed in the next section.

3.3. Free energies

The natural definition of the partition function of a model of simple composite polygons is

psn(z) =
∑
m>0

psn(m)z
m.

This partition function also satisfies some super-multiplicative inequalities; this follows from
lemma 3.2.

Lemma 3.4. The partition function of simple composite polygons satisfy the super-
multiplicative relation

psn1
(z)psn2

(z) 6 [(n1 + n2)
2]2+K0(n1+n2)

2/3
[φ(z)]kpsn1+n2+16(z)

whereφ(z) = z + 1 + 1/z.

Proof. Multiply the inequality in lemma 3.2 byzm, and sum overm. Then

psn1
(z)psn2

(z) 6 [(n1 + n2)
2]2+K0(n1+n2)

2/3

[ k∑
i=−k

zi
]
psn1+n2+16(z).
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Observe that [
∑k

i=−k z
i ] 6 [φ(z)]k to find the result. �

The super-multiplicative relation in lemma 3.4 suggests the existence of a limiting free
energy in these models. However, it is also the case that ifz > 1, then the limiting free energy
is infinite. To see this, note that if the containing polygon in a simple composite model is a
square of side-lengthp, and areap2, then it may contain an internal structure of size (say)
bp/4c2 (the division by 4 gives enough unoccupied vertices to fit the structure into the square).
Thuspn(z) > zbp/4c

2
, and so limn→∞[logpn(z)]/n > limp→∞[log zbp/4c

2
]/4p = ∞ if z > 1.

In other words, the limiting free energy is infinite ifz > 1. If z 6 1, then the limiting free
energy may be finite.

Theorem 3.5.Suppose thatξ is defined as in equation (3.2). Then there exists a critical value
of z, sayzc, in the interval[ξ−1, 1] such that ifz < zc, then there exists a finite limiting free
energy in models of simple composite polygons, with an activity conjugate to the size of the
internal structure:

Fs(z) = lim
n→∞

1

n
logpsn(z).

Moreover, ifz > zc, then this is infinite. Lastly, the free energy is a convex function oflogz.

Proof. That the limit exist is seen from the generalized super-multiplicative inequality of the
partition function in lemma 3.4 (Hammersley 1962). Ifz < zc, then

psn(z) 6 n2pn

∞∑
m=0

qmz
m

where the factorn2 is due to the fact that the top vertex of the internal structure can explore
the entire area of the containing polygon. Sinceqm = ξm+o(m) by equation (3.2), the sum
above is finite ifz < ξ−1; thus limn→∞ 1

n
logpn(z) < ∞. I have already shown that the

limiting free energy is infinite ifz > 1. In other words, there exists a critical value ofz in
the interval [ξ−1, 1]. Convexity follows from a standard application of the Cauchy–Schwartz
inequality. �

Thus, there is a phase transition which corresponds to a divergence in the free energy. This
transition occurs when the containing polygon is inflated by the internal structure, not unlike
the transition in inflating vesicles (Fisheret al 1992). This is best illustrated by introducing
the generating function of this model:

Gs(x, z) =
∞∑
n=0

psn(z)x
n. (3.13)

Let the radius of convergence ofGs(x, z) bexc(z). The limiting free energy of the model is
related to this by

Fs(z) = − logxc(z). (3.14)

The singularity diagram ofGs(x, z) is a plot ofxc(z) againstz, and the expected behaviour
of xc(z) is illustrated in figure 10. Notice that ifz < zc, thenpsn(z) > pn, so that there is a
critical value ofx, xc(z) 6 µ−1

2 , which corresponds to a singularity inGs(x, z). In fact, it
is the case thatxc = µ−1

2 if z < zc. If z < zc, then the internal structure should be small,
and its interference with the containing polygon should not be important. In other words,
the radius of convergence of the generating functionGs(x, z) is given byx = µ−1

2 , provided
that z < zc. This is seen as follows. Notice thatpn 6 psn(z) 6 n2pn

∑
m>0 qmz

m, so that
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Figure 10. The conjectured singularity diagram of
the generating functionGs(x, z). The solid line is
conjectured to be a line of branch points inGs(x, z), while
the dashed line is conjectured to be a line of essential
singularities inGs(x, z).

Figure 11. Four walks which cross a square of size
M ×M can be arranged as above and put together into a
polygon contained in a(2M + 3)× (2M + 3) square.

∑
n>0pnx

n 6 Gs(x, z) 6
∑

n>0 n
2pnx

n
∑

m>0 qmz
m. For everyz < zc the sum overm is

finite, but if x > µ−1
2 , thenGs(x, z) is infinite.

If z > zc, thenxc(z) = 0 by theorem 3.5. The singularities inGs(x, z) for x = µ−1
2

seems to be a line of branch points. If, in addition, in analogy with an inflating vesicle in
the Fisher–Guttmann–Whittington model (Fisheret al 1991) a line of essential singularities
in G(x, z) is encountered atz = zc, then the meeting point of the critical lines in figure 10 is
a tricritical point (Braket al 1993). However, this fact has not been verified, and is open to
further investigation.

If z > ξ−1 then it seems natural to expect that the internal structure will inflate the
containing polygon to a square conformation of maximal area. A proof that the critical
point of a simple composite model containing an internal structure which is a polygon is
atzc = ξ−1 = µ−1

2 is given in figure 11. The argument is as follows. Four walks which cross a
square of sizeM×M can be arranged as in figure 11 to find a square of size(2M+3)×(2M+3)
which contains a polygon. If there areccM(m) walks of lengthm which cross anM × M
square†, and if the partition function of these walks isccM(z), then this construction shows that
[ccM(z)]

4 6 ps8M+12(z). It is a theorem that limM→∞[ccM(z)]
1/M = ∞ if z > µ−1

2 (Madras
1995), and thus

lim inf
M→∞

[ps8M+12(z)]
1/M = ∞ (3.15)

if z > µ−1
2 . Thus, in the case of polygons confined to a containing polygon,zc = µ−1

2 [= ξ−1].
Trees and animals which crosses a square were also considered in Madras (1995), and if the
walks in figure 11 are replaced by those, then it is found thatzc = ξ−1 as well. An argument
of this type also works if a disc is the internal structure. The result is the following theorem.

Theorem 3.6.The critical value ofz is equal to the inverse of the growth constant of the
internal structure:zc = ξ−1.

Theorem 3.7.The generating function is finite in a rectangle in thexz-plane, that is, it is finite
for all z < zc andx < µ−1

2 . In other words, the radius of convergence ofGs(x, z) is equal to
µ−1

2 if z < zc, and is equal to zero ifz > zc.

† A walk crosses a square if it starts in the bottom vertex of the square, and terminates in the top edge of the square.
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Thus, theorem 3.7 states that the divergence in the generating function asx increases and
for z < zc is due to a divergence in the size of the containing polygon, while the divergence
for x < µ−1

2 and increasingz is due to an ‘inflation’ of the polygon by an internal structure of
size proportional to the square of the length of the containing polygon. This transition should
be of first order, and should also not be unlike the transition of a walk crossing a square to
its dense phase (where the walk fills the square: Whittington and Guttmann (1990), Madras
(1995)).

3.4. Density functions and simple composite models

The existence of the limiting free energy in models of simple composite polygons suggest that
the growth constants of simple composite polygons should be studied. The following result is
a direct consequence of the existence of the free energy.

Theorem 3.8.Suppose that the free energyFs(z) exists and is finite and convex forz ∈ [0, zc).
Then there is a functionan = o(n) such that the function

Ps(ε) = lim
n→∞[psn(bεnc + an)]

1/n

exists for all06 ε <∞. Moreover,

logPs(ε) = inf
z>0
{Fs(z)− ε logz}.

Ps(ε) is called the density function of the model.

Proof. Let δn be that least value ofm (dependent onz) which maximizespsn(m)z
m. Then

psn(δn)z
δn 6 psn(z) 6 n2psn(δn)z

δn (†)

since there are at mostn2 terms in the partition function. This shows that if the limiting free
energy exists, then the limit

Fs(z) = lim
n→∞

1

n
log

[
psn(δn)z

δn
]

(‡)

also exists. If lim supn→∞ δn/n = ∞, then equation(†) shows thatFs(z) = −∞ if z < ξ−1;
this follows sincepsn(δn) 6 n2pnqδn . This is a contradiction, so that lim supn→∞ δn/n <∞ if
z < ξ−1. Substractε logz from equation(‡) to obtain the following:

Fs(z)− ε logz = lim
n→∞

1

n
logpsn(δn) + lim

n→∞
1

n
(δn − bεnc) logz.

If the infimum overz is taken, then this shows that infz{Fs(z) − ε logz} = −∞, unless
inf z{limn→∞ 1

n
(δn−bεnc) logz} = 0. In other words, limn→∞ δn/n = ε, and this limit exists.

Thus,δn = bεnc + o(n), and the limit

Ps(ε) = lim
n→∞[psn(bεnc + an)]

1/n

exists so that logPs(ε) = inf z{Fs(z)− ε logz}. �

Theorem 3.8 completes the proof that the limit in equation (3.12) exists, even ifLn is
replaced bybLnc, whereL is a positive real number. The situation becomes more interesting if
alternative definitions of the density functions is considered. For example, consider the density
function of composite polygons counted bypsn(bnεc). Suppose that 06 ε < 1 in the first
case, and choosen so large thatnε < n/8. Then every conformation of the internal structure
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Figure 12. These four spanning polygons of a 3×3 square can be concatenated
into a spanning polygon of a 7×7 square by choosing three of the four locations
marked by{A,B,C,D}, deleting the marked edges and replacing them by the
dotted edges. The length of any spanning polygon of a 3× 3 square is 16, and
the spanning polygon of the 7× 7 square has 4× 16= 64 edges. If there are
sM spanning polygons in such a square, then this shows thats64 > 4[s16]4.
Repetition of this construction givess4k×16> 4[4[. . . [s16]4 . . .]4]4.

can be fit into a containing polygon which is a square or almost a square. Thus, for these large
values ofn,

qbnεc 6 psn(bnεc) 6 n2pnqbnεc. (3.17)

Thus if the 1/nth power is taken, andn→∞, then

16 lim inf
n→∞ [psn(bnεc)]1/n 6 lim sup

n→∞
[psn(bnεc)]1/n 6 µ2 (3.18)

provided thatε < 1. If ε = 1 thenpsn(n) 6 n2pnqn, so that

lim sup
n→∞

[psn(n)]
1/n 6 µ2ξ. (3.19)

On the other hand, ifε > 1 and a model of composite polygons with internal structures
which are polygons, trees or animals are considered, then this limit is infinite. This is seen as
follows in the case of spanning polygons. Letsm be the number of spanning polygons of a
square of sidelengthN − 1; thenm = 2N2. The construction in figure 12 shows thats4k×16 >
4[4[. . . [s16]4 . . .]4]4. Thus,s4k×16 > 41+4+42+···+4k [s16]4k = 4(4

k+1−1)/3[s16]4k . Take logarithms,
divide by 4k × 16, and takek to infinity. This shows that lim infk→∞[log s4k×16]/(4k × 16) >
[log 4]/48 + [logs16]/16> 0. Lastly, ifm in sm is not equal to 4k ×16 for somek, then define
k = blog(m/16)/ log 4c so that 4k+1× 16> m > 4k × 16, and then notice thatsm > s4k×16.
Thus lim infm→∞ 1

m
logsm > [log 4]/48 + [logs16]/16, and thussm > κm for someκ > 1. In

other words, the number of spanning polygons of a square (and thus the number of spanning
trees and spanning animals) grows exponentially with its size.

Choosen large enough that
√
nε/2< n/8, then all the spanning polygons of lengthbnεc

of a square of side-lengthb√bnεc/2c can be fit into (an almost) square containing polygon of
lengthn, provided thatn is large. Thus

sbnεc 6 psn(bnεc) 6 n2pnqbnεc (3.20)

and by taking the power 1/n and lettingn → ∞, it follows that the limit is infinite. If the
power 1/nε is taken instead, then

1< lim sup
n→∞

[psn(bnεc)]1/nε 6 ξ. (3.21)

In other words, this is finite. The existence of these limits is an outstanding issue, but from
equations (3.18) and (3.21) I make the following conjecture.

Conjecture 3.9. The following limits exist:

lim
n→∞[psn(bnεc)]1/n = µ2 ∀ε ∈ [0, 1)

lim
n→∞[psn(n)]

1/n = µ2ξ

lim
n→∞[psn(bnεc)]1/nε = ξ ∀ε ∈ (1, 2).
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Limits related to the above can be shown to exist. For example, if one defines

psn(6 m) =
m∑
j=0

psn(j) (3.22)

then it follows from corollary 3.3 that ifε > 1 then

psn1
(6 bnε1c)psn2

(6 bnε2c) 6 f (n1 + n2)p
s
n1+n2

(6 b(n1 + n2)
εc + 2) (3.23)

wheref (n) = 6n4+2K0n
2/3

. In addition, the boundpsn(6 bnεc) 6
∑

m6bnεc qm, is not difficult
to derive, so thatpsn(6 bnεc) 6 Kbn

εc for some constantK. In other words, the limit

lim
n→∞[psn(6 (bnεc − 2))]1/nε (3.24)

exists and is finite, for allε ∈ [1, 2].

4. Interacting composite models

In this section I restrict the discussion to simple composite polygons, and an interaction between
the containing polygon and the internal structure will be introduced. In particular, letpsn(k,m)

be the number of simple composite polygons with a containing polygon of sizen, an internal
structure of sizem, and withk nearest neighbour contacts between the internal structure and
the containing polygon. The partition function of this model is

psn(y, z) =
∑
m,k

psn(k,m)y
kzm. (4.1)

Observe that concatenation and unfolding of these simple composite polygons gives

psn1
(0, z)psn2

(0, z) 6 f (n1 + n2)p
s
n1+n2+16(0, z) (4.2)

so that there is a limiting free energy if the interaction between the internal structure and the
containing polygon is an infinite (short-ranged) repulsion.

Theorem 4.1.The free energy of simple composite polygons exists if there is an infinite
repulsion between the simple composite polygon and the internal structure:

Fs(0, z) = lim
n→∞

1

n
logpsn(0, z)

which exists, is finite and convex for allz ∈ [0, zc). Arguments similar to those in the previous
section show thatzc = ξ−1.

It is not known that the free energy exists for all values ofy. Instead, ify < 1, then
one might argue that if a polygon with an internal structure of sizem and with k nearest
neighbour contacts is unfolded twice, then all the nearest neighbour contacts are destroyed,
and by corollaries 2.4 and 2.5,

psn(0, m) 6 psn(k,m) 6 [n2]K0bn2/3cpsn+16(0, m). (4.3)

Thus, multiplying the above byykzm and summing overm andk,

psn(0, z)

1− y 6 psn(y, z) 6 [n2]K0bn2/3cp
s
n(0, z)

1− y . (4.4)

Thus, by taking logarithms, dividing byn and lettingn → ∞, the following theorem is
obtained.

Theorem 4.2.For all valuesz ∈ [0, zc) and all y ∈ [0, 1], the limiting free energyFs(y, z)
exists. MoreoverFs(y, z) = Fs(0, z) for all z ∈ [0, ξ−1).
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Figure 13. This polygon has lengthn andn− 4 nearest
neighbour contacts with an internal structure which is a
polygon of lengthn− 8.

Figure 14. The phase diagram of an interacting model
of complex composite polygons. There are three phases;
first a desorbed phase of polygons containing internal
structures of size no more than the perimeter length
of the containing polygon, and then an adsorbed phase
where the internal structure is adsorbed in the perimeter
of the containing polygon. Finally, there is an inflated
phase, where the internal structure inflates the containing
polygon. These phases coexist at a triple point.

Notice that a construction similar to that of figure 11 shows thatFs(y, z) = ∞ if z > ξ−1,
for any value ofy > 0. If z < ξ−1 then theorem 4.2 can be used to show that there is a non-
analyticity inFs(y, z) at a critical valueyc(z). This may be seen by, for example, examining
a situation as in figure 13. The partition function contains a term which corresponds to a
square containing polygon, and an internal structure which consists of at leastAn edges or
unit squares (for some fixed value ofA), and withn− 4 nearest neighbour contacts.

The result is that

psn(y, z) > yn−4zAn (4.5)

and thus, if the free energy exists, then

Fs(y, z) > logy +A logz. (4.6)

In other words, for fixedz, there exists ayc(z) such thatFc(y, z) > Fc(0, z) if y > yc(z).
Thus, there is a second critical lineyc(z) in the phase diagram. Notice that

∂

∂y
Fc(y, z) = 0 (4.7)

and that this derivative is positive fory > yc(z) whenever it exists (and it exists almost
everywhere forz < zc by the convexity properties ofFc(y, z). Thus, it is appropriate to
interprete the critical lineyc(z) as an adsorption transition of the internal structure on the
containing polygon. Notice also thatyc(0) = ∞, since ifz = 0, then the internal structure
is empty, and no adsorption can take place. The phase diagram of this model is illustrated in
figure 14.

5. Conclusions

In this paper I examined the existence of growth constants, limiting free energies and the phase
diagram of a class of (interacting) composite polygon models. These models contain internal
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structures which satisfy a super-multiplicative relation (equation (3.2)); the methods in this
paper cannot be fruitfully applied to a model of a lattice polygons containing a walk, which
satisfies a sub-multiplicative relation. In that case a different idea from the methods in this
paper is needed.

Two different classes of composite polygons were considered in this paper. The first case
is a class of complex composite polygons, where the internal structure is not connected. These
models have a transitions at zero temperature; for any positive value of the activity the limiting
free energy is infinite. This means that there is an infinite free energy associated with each
edge in the containing polygon, and from that perspective this model is not very interesting.
However, it seems that a more appropriate normalization of the free energy would involve
the area of the composite polygon, instead of its perimeter. In this context, one may define
dn(m) to be the number of polygons of arean containing an internal structure(s) of sizem.
Concatenation shows that the limiting free energy exists, and it can also be shown that the
limiting free energy (per unit area) is finite for values ofz less than the inverse growth constant
of the internal structure.

In the case of simple composite polygons, the limiting free energy exists and is finite for
values of the activityz less than the inverse growth constant of the internal structure. The
transition at the critical value ofz seems to be an inflation of the containing polygon by the
internal structure. Indeed, the number of edges in the internal structure is defined by the
derivative ofFs(z), which is finite itz < zc, and infinite ifz > zc. In the deflated phase the
mean number of edges in the internal structure is O(n), or the number of edges in the internal
structure as a fraction of the length of the containing polygon is finite in the thermodynamic
limit. In the inflated phase this fraction is itself infinite. It seems that this transition resembles
the inflation of a disc by its area in the thermodynamic limit (see, for example, Fisheret al
1991).

If there is also an interaction between the containing polygon and the internal structure,
then a simple model of composite polygons may also exhibit a transition where the internal
structure adsorbs on the containing polygon. In this model I was able to show that the limiting
free energyFs(y, z) (wherey is an activity conjugate to the number of contacts between the
containing polygon and the internal structure) exists for all 06 y 6 yc(z), (whereyc(z) is
the critical curve along which the adsorption transition occurs). It is not known thatFs(y, z)
exists ify > yc(z) (andz < 1). This state of affairs is not unlike the case of walks with a
nearest neighbour interaction (which is a model of linear polymers undergoing aθ -transition).
In that model the free energy is known to exist for values of the nearest neighbour activity
which corresponds to an expanded phase, but not for the collapsed phase (Tesiet al 1996).

Appendix

ConsiderM distinct points {(pi, qi)}Mi=1 in the square lattice, subject to the following
constraints:

(1) 0 = q1

p1
<

q2

p2
< · · · < qM

pM
6 1, whereq1 = 0, and where all pairs(pi, qi) are relative

primes,
(2)

∑M
i=1(pi + qi) 6 n.

For a givenn, what is the largest number of distinct points which satisfy the constraints
above? In other words, find the maximum value ofM (as a function ofn). Suppose that the
value ofM is known, and that a setS of M points satisfying the constaints above are given.
Let the maximum value ofpi + qi in S beN . If a point (pi, qi) ∈ S with pi + qi = N is
exchanged with a new point(p∗i , q

∗
i ) 6∈ S but withp∗i +q∗i < N (suppose this is possible), then
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the new set of points [S \ {(pi, qi)}]∪{(p∗i , q∗i )} satisfies the constraints above, the value ofM

remains unchanged, while the value of the sum
∑M

i=1(pi + qi) decreases. Thus, the smallest
possible values ofpi andqi should be chosen to find the maximum value ofM.

If the first constraint (1) above is relaxed by abandoning the requirement that all pairs
(pi, qi) are relative primes, then an upper bound onM will be found, since points with smaller
values ofpi +qi can be chosen to satisfy condition (2). Thus, choose thepi andqi to be points
above or on thep-axis in thepq-plane, but underneath or on the main diagonalq = p. Then
for eachpi the values ofqi are{0, 1, . . . , pi}, whilepi = 1, 2, . . . . If pi + qi 6 N , then the
number of points is1 + 2 + 2 +· · · + bN/2 + 1c. Assume thatN is odd, then this sums to at
most

1 + 2 + 2 + 3 + 3 +· · · + bN/2 + 1c + bN/2 + 1c = bN/2 + 1cbN/2 + 2c − 1 (A.1)

so that the number of distinct points is bound from above byM 6 bN/2 + 2c2. On the other
hand, for these choices for(pi, qi),

M∑
i=1

(pi + qi) 6
dN/2e∑
i=1

i(4i − 3) = dN/2 + 1e(dN/2e + 2)(8dN/2e + 3)/6

6 4
3dN/2 + 2e3. (A.2)

This is less thann if dN/2 + 2e3 < 3n/4, or if dN/2 + 2e 6 (3n/4)1/3. But then from equation
(A.1),M 6 bN/2 + 2c2, thus,M 6 (3n/4)2/3, and sinceM is an integer,

M 6 b(3n/4)2/3c. (A.3)

In other words,M cannot grow faster than a 2/3-power ofn. So far, this is only valid if all
the points(pi + qi) with pi + qi 6 N are included in the calculation. If only a subset of these
are used (and some which havepi + qi = N are discarded to minimize the sum in condition
(2)), then there are O(N) corrections to equations (A.1) and (A.2). But these changes will only
imply a O(n1/3) correction to equation (A.3) so that there exists a constantC0 such that

M 6 C0bn2/3c. (A.4)
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